Development of a Urine Strip Analyzer Using Artificial Neural Network Using an Android Phone
نویسندگان
چکیده
Point of Care Testing (POCT) improves clinical process outcome. It has the potential to reduce errors and the wastage of resources. There is a significant amount of information obtained through the examination of urine. The routine urinalysis consists of two major components: physiochemical determination and microscopic examination of urine sediment. The physiochemical determination includes the appearance, specific gravity and reagent strip measurements. The physiochemical properties of urine may include the following analytes: pH, protein, glucose, ketone, blood, biliburin, urobilinogen, nitrite, leukocytes and specific gravity. Reagent strips provide a simple, rapid means for performing medically significant chemical analysis for urine. Assessment of the dipstick test result is done manually by visually comparing the reactive color of each reagent with dipstick color chart based on the color similarities. The manual interpretation has its weaknesses or failure. It includes the differences in a perception of color, differences in lighting condition and a failure to read several reagents in a specified time. The study of artificial neural networks is motivated by its similarity to work with biological systems successfully. It can learn from training samples or by means of neural network capable to learn. After successful training, a neural network can find reasonable solutions for similar problems of the same class that were not explicitly trained. This in turn results in a high degree of fault tolerance against noisy input data. The study developed a urine analyzer in android environment. It is able to read a 4 parameter and 10 parameter urine strip in real-time. This study also used digital image processing that includes cropping, image segmentation, thresholding, smoothing and recognition. The training is different for each parameter. This is done through Levenberg Marquardt. It performed evaluation through comparison of the standard urinalysis and the device. The prototype is evaluated and certified by a professional registered medical technologist. The accuracy test performed proved to have an accuracy of 96%.
منابع مشابه
Structural Reliability: An Assessment Using a New and Efficient Two-Phase Method Based on Artificial Neural Network and a Harmony Search Algorithm
In this research, a two-phase algorithm based on the artificial neural network (ANN) and a harmony search (HS) algorithm has been developed with the aim of assessing the reliability of structures with implicit limit state functions. The proposed method involves the generation of datasets to be used specifically for training by Finite Element analysis, to establish an ANN model using a proven AN...
متن کاملUsing Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips
There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...
متن کاملUsing Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips
There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...
متن کاملDevelopment of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data
Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...
متن کاملDevelopment of an in-cylinder processes model of a CVVT gasoline engine using artificial neural network
Today, employing model based design approach in powertrain development is being paid more attention. Precise, meanwhile fast to run models are required for applying model based techniques in powertrain control design and engine calibration. In this paper, an in-cylinder process model of a CVVT gasoline engine is developed to be employed in extended mean valve control oriented model and also mod...
متن کامل